论文标题
学习鲁棒领域适应的因果关系
Learning causal representations for robust domain adaptation
论文作者
论文摘要
域的适应性通过利用相关源域中的知识来解决目标领域中的学习问题。尽管已经取得了显着的进步,但几乎所有现有的域适应方法都需要大量未标记的目标域数据来学习域不变表示,以实现对目标域的良好概括性。实际上,在许多现实世界中,目标域数据可能并不总是可用。在本文中,我们研究了在训练阶段无法获得目标域数据的情况,并且只有标记良好的源域数据可用,称为鲁棒域的适应性。为了解决这个问题,在特征和类变量之间的因果关系之间的因果关系在整个域之间是鲁棒的,我们提出了一种新颖的因果自动编码器(CAE),该因果自动编码器(CAE)将深层自动编码器和因果结构学习整合到统一模型中,以学习仅使用来自单个源域的数据来学习因果关系。具体而言,采用了深层自动编码器模型来学习低维表示,而因果结构学习模型的设计旨在将低维表示分为两组:因果表示和任务 - 毫无疑问的表示。使用三个现实世界数据集,广泛的实验已验证了CAE的有效性与11种最先进的方法相比。
Domain adaptation solves the learning problem in a target domain by leveraging the knowledge in a relevant source domain. While remarkable advances have been made, almost all existing domain adaptation methods heavily require large amounts of unlabeled target domain data for learning domain invariant representations to achieve good generalizability on the target domain. In fact, in many real-world applications, target domain data may not always be available. In this paper, we study the cases where at the training phase the target domain data is unavailable and only well-labeled source domain data is available, called robust domain adaptation. To tackle this problem, under the assumption that causal relationships between features and the class variable are robust across domains, we propose a novel Causal AutoEncoder (CAE), which integrates deep autoencoder and causal structure learning into a unified model to learn causal representations only using data from a single source domain. Specifically, a deep autoencoder model is adopted to learn low-dimensional representations, and a causal structure learning model is designed to separate the low-dimensional representations into two groups: causal representations and task-irrelevant representations. Using three real-world datasets the extensive experiments have validated the effectiveness of CAE compared to eleven state-of-the-art methods.