论文标题

通过预测的在线虚拟机分配

Online Virtual Machine Allocation with Predictions

论文作者

Buchbinder, Niv, Fairstein, Yaron, Mellou, Konstantina, Menache, Ishai, Joseph, Naor

论文摘要

在过去的十年中,云计算行业迅速发展,随着这种增长,对计算资源的需求大大增加。需求以虚拟机(VM)请求的形式表现出来,该请求需要以最小化资源碎片化并有效利用可用机器的方式分配给物理机器。该问题可以建立为垃圾箱问题的动态版本,目的是最大程度地减少垃圾箱的总使用时间(物理机器)。早期在动态垃圾箱包装上的工作假定,调度程序没有任何知识,后来研究的模型,其中每个“项目”的寿命/持续时间(在我们的上下文中)可供调度程序使用。这些额外的信息被证明是可以指数提高可实现的竞争比率。 由机器学习的进步促进,可以很好地估算工作量特征,本文研究了有关未来(总)需求的额外信息的效果。在云上下文中,由于需求是在许多VM请求上的汇总,因此可以很高的准确性(例如,使用历史数据)进行预测。我们表明,通过使用这些其他信息可以大大提高竞争因素。在某些情况下,我们实现了持续的竞争力,甚至是接近1的竞争因素。在此过程中,我们设计了新的离线算法,以提高了动态bin包装问题的近似值。

The cloud computing industry has grown rapidly over the last decade, and with this growth there is a significant increase in demand for compute resources. Demand is manifested in the form of Virtual Machine (VM) requests, which need to be assigned to physical machines in a way that minimizes resource fragmentation and efficiently utilizes the available machines. This problem can be modeled as a dynamic version of the bin packing problem with the objective of minimizing the total usage time of the bins (physical machines). Earlier works on dynamic bin packing assumed that no knowledge is available to the scheduler and later works studied models in which lifetime/duration of each "item" (VM in our context) is available to the scheduler. This extra information was shown to improve exponentially the achievable competitive ratio. Motivated by advances in Machine Learning that provide good estimates of workload characteristics, this paper studies the effect of having extra information regarding future (total) demand. In the cloud context, since demand is an aggregate over many VM requests, it can be predicted with high accuracy (e.g., using historical data). We show that the competitive factor can be dramatically improved by using this additional information; in some cases, we achieve constant competitiveness, or even a competitive factor that approaches 1. Along the way, we design new offline algorithms with improved approximation ratios for the dynamic bin-packing problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源