论文标题
大型Zsigmondy Primes
Large Zsigmondy Primes
论文作者
论文摘要
如果$ a> b $和$ n> 1 $是正整数,而$ a $和$ b $是相对质量的整数,那么大的zsigmondy prime(a,a,b,n)$是一个prime $ p $,使得$ p \,| \ | \,a^n-b^n $ but \,a^n -b^n $或$ p> n + 1 $。我们对整个整数$(a,b,n)$进行分类,不存在大型Zsigmondy Prime。
If $a>b$ and $n>1$ are positive integers and $a$ and $b$ are relatively prime integers, then a large Zsigmondy prime for $(a,b,n)$ is a prime $p$ such that $p \,|\, a^n-b^n$ but $p \,\nmid \, a^m-b^m$ for $1 \leq m < n$ and either $p^2 \, | \, a^n - b^n$ or $ p > n + 1$. We classify all the triples of integers $(a, b, n)$ for which no large Zsigmondy prime exists.