论文标题

非平稳多尺度问题的时间分裂算法

Temporal Splitting algorithms for non-stationary multiscale problems

论文作者

Efendiev, Yalchin, Pun, Sai-Mang, Vabishchevich, Petr N.

论文摘要

在本文中,我们研究了用于多尺度问题的时间分裂算法。确切的细网上空间问题通常需要降低自由度。多尺度算法旨在表示粗网格上的细节细节,从而减少问题的大小。在解决时间依赖性问题时,可以利用解决方案的多尺度分解,并通过解决较小的维问题来进行时间分裂,这在论文中进行了研究。在提出的方法中,我们考虑基于各种低维空间近似值的时间分裂。由于多尺度空间分裂会对解决方案空间进行“良好”分解,因此可以实现有效的隐式分散时间离散化。我们在早期工作中提出了最近开发的理论结果,并在本文中采用了多尺度问题。提出了数值结果,以证明所提出的分裂算法的效率。

In this paper, we study temporal splitting algorithms for multiscale problems. The exact fine-grid spatial problems typically require some reduction in degrees of freedom. Multiscale algorithms are designed to represent the fine-scale details on a coarse grid and, thus, reduce the problems' size. When solving time-dependent problems, one can take advantage of the multiscale decomposition of the solution and perform temporal splitting by solving smaller-dimensional problems, which is studied in the paper. In the proposed approach, we consider the temporal splitting based on various low dimensional spatial approximations. Because a multiscale spatial splitting gives a "good" decomposition of the solution space, one can achieve an efficient implicit-explicit temporal discretization. We present a recently developed theoretical result in our earlier work and adopt it in this paper for multiscale problems. Numerical results are presented to demonstrate the efficiency of the proposed splitting algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源