论文标题
空间认知的聚合模型
The Aggregator Model of Spatial Cognition
论文作者
论文摘要
跟踪物体在本地空间中的位置是动物大脑的核心功能。我们尚不了解有限的神经资源如何完成。在标准下讨论了空间认知的挑战:(a)计算成本的规模; (b)特征绑定; (c)空间位移的精确计算; (d)快速学习不变模式; (e)利用强大的贝叶斯先验物体恒定。当前领先的空间认知模型是等级贝叶斯视觉模型和深神网。这些通常是完全分布的模型,它们使用一组模块化知识源之间的直接通信链接计算,没有其他基本组件。它们的分布性质导致标准(a) - (e)的困难。我讨论了空间认知的替代模型,该模型使用单个中心位置聚合器来存储每个对象或特征的估计位置,并在聚合器和知识源之间的迭代周期中应用约束。该模型在满足标准(a) - (e)方面具有优势。如果哺乳动物的大脑中有聚集器,则有理由相信它在丘脑中。我概述了丘脑中聚合函数的神经实现。
Tracking the positions of objects in local space is a core function of animal brains. We do not yet understand how it is done with limited neural resources. The challenges of spatial cognition are discussed under the criteria: (a) scaling of computational costs; (b) feature binding; (c) precise calculation of spatial displacements; (d) fast learning of invariant patterns; and (e) exploiting the strong Bayesian prior of object constancy. The leading current models of spatial cognition are Hierarchical Bayesian models of vision, and Deep Neural Nets. These are typically fully distributed models, which compute using direct communication links between a set of modular knowledge sources, and no other essential components. Their distributed nature leads to difficulties with the criteria (a) - (e). I discuss an alternative model of spatial cognition, which uses a single central position aggregator to store estimated locations of each object or feature, and applies constraints on locations in an iterative cycle between the aggregator and the knowledge sources. This model has advantages in addressing the criteria (a) - (e). If there is an aggregator in mammalian brains, there are reasons to believe that it is in the thalamus. I outline a possible neural realisation of the aggregator function in the thalamus.