论文标题
关于合理扭曲的广义Weyl代数
On rational twisted generalized Weyl algebra
论文作者
论文摘要
这项工作的目的是研究某些偏斜扭曲的代数的结构,而系数环是特征零字段上多项式环的定位,并提供了相关性。给出了合理扭曲的广义Weyl代数的平行结构。我们提出了一种对这些代数的建设性描述的方法和显式公式,并基于对某个复杂的谎言代数的通用包膜代数的Gelfand-Zeitlin实现的互动对称不变的亚代词。作为具体示例,我们讨论了第三等级的特殊统一和正交代数。
The aim of this work is to investigate the structure of some skew twisted algebras, when the coefficient ring is a localization of the polynomial ring over the field of characteristic zero, and an involution is provided. A parallel construction of the rational twisted generalized Weyl algebras is given. We propose a method and explicit formulas for a constructive description of these algebras and their involution-symmetric invariant subalgebras based on the Gelfand-Zeitlin realization of the universal enveloping algebra of some complex Lie algebras. As concrete examples we discuss special unitary and orthogonal algebras of rank three.