论文标题
表面束的签名和有限
Signature of surface bundles and bounded cohomology
论文作者
论文摘要
扩展了莫里塔的结果,我们表明,G曲线属的模量空间的所有重言式类别都是有界的。作为一个应用程序,我们在封闭的表面上获得了表面束$ e \ to b $,Eulder特性$χ(e)$和签名$σ(e)$与$ \ vert3σ(e)\ vert \ leq \ leq \ leq \ vertχ(e)χ(e)\ vert $相关。
Extending a result of Morita, we show that all tautological classes of the moduli space of genus g curves are bounded. As an application, we obtain that for a surface bundle $E\to B$ over a closed surface, the Eulder characteristic $χ(E)$ and the signature $σ(E)$ are related by $\vert 3 σ(E)\vert \leq \vert χ(E)\vert$.