论文标题

基于机器学习技术的组织病理学图像的客观诊断:经典方法和新趋势

Objective Diagnosis for Histopathological Images Based on Machine Learning Techniques: Classical Approaches and New Trends

论文作者

Elazab, Naira, Soliman, Hassan, El-Sappagh, Shaker, Islam, S. M. Riazul, Elmogy, Mohammed

论文摘要

组织病理学是指活检样本的病理学家的检查。组织病理学图像由显微镜捕获,以定位,检查和分类许多疾病,例如不同的癌症类型。它们提供了不同类型的疾病及其组织状况的详细观点。这些图像是定义生物组成或分析细胞和组织结构的必不可少的资源。这种成像方式对于诊断应用非常重要。组织病理学图像的分析是支持疾病诊断的多产和相关的研究领域。在本文中,评估了组织病理学图像分析的挑战。对在组织学图像分析中应用的常规和深度学习技术进行了广泛的综述。这篇评论总结了许多当前的数据集,并通过最近的深度学习技术以及可能的未来研究途径强调了重要的挑战和约束。尽管到目前为止在该研究领域取得了进展,但由于成像技术和疾病特异性特征的多样性,它仍然是开放研究的重要领域。

Histopathology refers to the examination by a pathologist of biopsy samples. Histopathology images are captured by a microscope to locate, examine, and classify many diseases, such as different cancer types. They provide a detailed view of different types of diseases and their tissue status. These images are an essential resource with which to define biological compositions or analyze cell and tissue structures. This imaging modality is very important for diagnostic applications. The analysis of histopathology images is a prolific and relevant research area supporting disease diagnosis. In this paper, the challenges of histopathology image analysis are evaluated. An extensive review of conventional and deep learning techniques which have been applied in histological image analyses is presented. This review summarizes many current datasets and highlights important challenges and constraints with recent deep learning techniques, alongside possible future research avenues. Despite the progress made in this research area so far, it is still a significant area of open research because of the variety of imaging techniques and disease-specific characteristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源