论文标题

强化学习实验和解决机器人达到任务的基准

Reinforcement Learning Experiments and Benchmark for Solving Robotic Reaching Tasks

论文作者

Aumjaud, Pierre, McAuliffe, David, Lera, Francisco Javier Rodríguez, Cardiff, Philip

论文摘要

强化学习在机器人技术方面表现出了巨大的希望,这要归功于其通过自我训练开发有效的机器人控制程序的能力。特别是,加强学习已成功地应用于用机器人臂解决触及任务。在本文中,我们定义了一个健壮,可重现和系统的实验过程,以比较各种无模型算法在解决此任务时的性能。这些政策是在模拟中进行训练的,然后将其转移到物理机器人操纵器中。结果表明,当目标探索技术增强奖励信号时,当目标位置在每个情节的开头随机初始化时,在7到9倍之间增加了差异剂的平均回报。

Reinforcement learning has shown great promise in robotics thanks to its ability to develop efficient robotic control procedures through self-training. In particular, reinforcement learning has been successfully applied to solving the reaching task with robotic arms. In this paper, we define a robust, reproducible and systematic experimental procedure to compare the performance of various model-free algorithms at solving this task. The policies are trained in simulation and are then transferred to a physical robotic manipulator. It is shown that augmenting the reward signal with the Hindsight Experience Replay exploration technique increases the average return of off-policy agents between 7 and 9 folds when the target position is initialised randomly at the beginning of each episode.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源