论文标题
用DESI测试重力理论:估计器,预测和仿真要求
Testing the theory of gravity with DESI: estimators, predictions and simulation requirements
论文作者
论文摘要
发现后不久,一般相对论(GR)被用于预测我们宇宙在最大规模上的行为,后来成为现代宇宙学的基础。它的有效性已在从太阳系到合并黑洞的一系列尺度和环境中进行了验证。但是,到目前为止,对GR对宇宙学量表的实验确认缺乏人们所希望的准确性 - 其在这些量表上的应用很大程度上是基于外推的,其有效性有时会在意外的宇宙加速度的阴影下受到质疑。未来的天文工具调查星系在可观察到的宇宙的大部分部分(例如暗能量光谱仪器(DESI))上的分布和演变将能够测量重力指纹及其统计能力将允许对GR替代方案的强大限制。 在本文中,基于一组$ n $体体模拟和模拟的星系目录,我们研究了两个经过良好研究的重力模型的线性红移扭曲以外的许多传统和新型估计器的预测,Chameleon $ f(r)$ gravility us f(r)$ gravity and braneworld and braneworld模型,以及使用GREDI使用DESI的测试偏差的潜力。这些估计量采用了银河系和潜在的暗物质领域的广泛统计特性,包括两点和高阶统计,环境依赖性,红移空间扭曲和弱透镜。我们发现,他们具有测试GR的前所未有的精度的有希望的能力。未来的主要挑战是,为GR和替代模型制作基于模拟的模拟星系目录,以充分利用DESI调查的统计能力,并更好地了解关键系统效应的影响。使用这些,我们使用DESI确定重力测试的未来模拟和分析需求。
Shortly after its discovery, General Relativity (GR) was applied to predict the behavior of our Universe on the largest scales, and later became the foundation of modern cosmology. Its validity has been verified on a range of scales and environments from the Solar system to merging black holes. However, experimental confirmations of GR on cosmological scales have so far lacked the accuracy one would hope for -- its applications on those scales being largely based on extrapolation and its validity sometimes questioned in the shadow of the unexpected cosmic acceleration. Future astronomical instruments surveying the distribution and evolution of galaxies over substantial portions of the observable Universe, such as the Dark Energy Spectroscopic Instrument (DESI), will be able to measure the fingerprints of gravity and their statistical power will allow strong constraints on alternatives to GR. In this paper, based on a set of $N$-body simulations and mock galaxy catalogs, we study the predictions of a number of traditional and novel estimators beyond linear redshift distortions in two well-studied modified gravity models, chameleon $f(R)$ gravity and a braneworld model, and the potential of testing these deviations from GR using DESI. These estimators employ a wide array of statistical properties of the galaxy and the underlying dark matter field, including two-point and higher-order statistics, environmental dependence, redshift space distortions and weak lensing. We find that they hold promising power for testing GR to unprecedented precision. The major future challenge is to make realistic, simulation-based mock galaxy catalogs for both GR and alternative models to fully exploit the statistic power of the DESI survey and to better understand the impact of key systematic effects. Using these, we identify future simulation and analysis needs for gravity tests using DESI.