论文标题

通过强化学习在行为上多样化的交通模拟

Behaviorally Diverse Traffic Simulation via Reinforcement Learning

论文作者

Shiroshita, Shinya, Maruyama, Shirou, Nishiyama, Daisuke, Castro, Mario Ynocente, Hamzaoui, Karim, Rosman, Guy, DeCastro, Jonathan, Lee, Kuan-Hui, Gaidon, Adrien

论文摘要

交通模拟器是自动驾驶开发的重要工具。尽管已经取得了持续的进展,以为开发人员提供更多的选择来建模各种交通参与者,但调整这些模型以增加行为多样性,同时保持质量通常非常具有挑战性。本文介绍了一种易于调节的策略生成算法,用于自动驾驶剂。拟议的算法通过通过独特的政策集选择器利用深度强化学习的代表和探索能力来平衡多样性和驾驶技能。此外,我们提出了一种利用固有奖励来扩大训练中的行为差异的算法。为了提供定量评估,我们开发了两个基于轨迹的评估指标,这些指标衡量了政策和行为覆盖率之间的差异。我们通过实验表明我们的方法在几个具有挑战性的交叉场景上的有效性。

Traffic simulators are important tools in autonomous driving development. While continuous progress has been made to provide developers more options for modeling various traffic participants, tuning these models to increase their behavioral diversity while maintaining quality is often very challenging. This paper introduces an easily-tunable policy generation algorithm for autonomous driving agents. The proposed algorithm balances diversity and driving skills by leveraging the representation and exploration abilities of deep reinforcement learning via a distinct policy set selector. Moreover, we present an algorithm utilizing intrinsic rewards to widen behavioral differences in the training. To provide quantitative assessments, we develop two trajectory-based evaluation metrics which measure the differences among policies and behavioral coverage. We experimentally show the effectiveness of our methods on several challenging intersection scenes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源