论文标题

强化学习与时间相关的机器人音乐家的目标

Reinforcement Learning with Time-dependent Goals for Robotic Musicians

论文作者

Fryen, Thilo, Eppe, Manfred, Nguyen, Phuong D. H., Gerkmann, Timo, Wermter, Stefan

论文摘要

强化学习是完成机器人控制任务的一种有前途的方法。但是,演奏乐器的任务在很大程度上没有探索,因为它涉及实现具有时间维度的顺序目标的挑战。在本文中,我们通过将时间扩展到目标条件的强化学习:时间依赖于时间依赖的目标来解决机器人音乐。我们证明这些可以用来训练机器人音乐家弹奏Theremin乐器。我们在模拟中训练机器人代理,并将获得的政策转移到现实世界的机器人秘密主义者。补充视频:https://youtu.be/jvc9mpzdqn4

Reinforcement learning is a promising method to accomplish robotic control tasks. The task of playing musical instruments is, however, largely unexplored because it involves the challenge of achieving sequential goals - melodies - that have a temporal dimension. In this paper, we address robotic musicianship by introducing a temporal extension to goal-conditioned reinforcement learning: Time-dependent goals. We demonstrate that these can be used to train a robotic musician to play the theremin instrument. We train the robotic agent in simulation and transfer the acquired policy to a real-world robotic thereminist. Supplemental video: https://youtu.be/jvC9mPzdQN4

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源