论文标题

Horndeski模型中的准静态近似方法的不同方法比较

Comparison of different approaches to the quasi-static approximation in Horndeski models

论文作者

Pace, Francesco, Battye, Richard, Bellini, Emilio, Lombriser, Lucas, Vernizzi, Filippo, Bolliet, Boris

论文摘要

可以通过多种方式应用用于修饰重力的准静态近似(QSA)。我们考虑将以下近似值应用于以下方程的三种不同的分析公式;(1)字段方程; (2)两个度量电位的方程式; (3)在状态方程(EOS)方法中得出的吸引者解决方案的使用。我们在Horndeski型号的框架内评估了这些实现对有效重力常数($μ$)和滑移参数($η$)的准确性。特别是,对于一组模型,我们比较了使用QSA计算的宇宙学可观察物,即物质功率谱以及CMB温度和透镜角功率光谱以及精确的数值溶液。为此,我们使用类代码的新开发的分支:QSA_CLASS。这三种方法完全同意很小的尺度。通常,我们发现,除了$ f(r)$模型之外,所有三种方法都会带来相同的结果,准静态近似与大尺度上的数值计算不同($ k \ sillsim 3-4 \ times 10^{ - 3} { - 3} {-3} \,h \,h \,h \,h \,{\ rm mpc}^}^ - 1} $)。宇宙学可观察物被复制至1%以内,直至尺度$ {\ rm k} = k/h_0 $少数的顺序和$ \ ell> 5 $,用于基于字段方程和eos的方法,如果我们在$μ$ $ $ $上的相关表达式,我们也不会找到任何可观的差异,并且没有发现任何可观的差异,并且与$μ$相关的标准属于$μ,稳健,固定形式主义的适用性范围。我们讨论为什么从方程式获得的表达式的电位有限的适用性。我们的结果与先前的分析估计一致,并表明QSA是可靠的工具,可用于与当前和将来的观察值进行比较,以约束$λ$ CDM的模型。

A quasi-static approximation (QSA) for modified gravity can be applied in a number of ways. We consider three different analytical formulations based on applying this approximation to: (1) the field equations; (2) the equations for the two metric potentials; (3) the use of the attractor solution derived within the Equation of State (EoS) approach. We assess the veracity of these implementations on the effective gravitational constant ($μ$) and the slip parameter ($η$), within the framework of Horndeski models. In particular, for a set of models we compare cosmological observables, i.e., the matter power spectrum and the CMB temperature and lensing angular power spectra, computed using the QSA, with exact numerical solutions. To do that, we use a newly developed branch of the CLASS code: QSA_class. All three approaches agree exactly on very small scales. Typically, we find that, except for $f(R)$ models where all the three approaches lead to the same result, the quasi-static approximations differ from the numerical calculations on large scales ($k \lesssim 3 - 4 \times 10^{-3}\,h\,{\rm Mpc}^{-1}$). Cosmological observables are reproduced to within 1% up to scales ${\rm K} = k/H_0$ of the order of a few and $\ell>5$ for the approaches based on the field equations and on the EoS, and we also do not find any appreciable difference if we use the scale-dependent expressions for $μ$ and $η$ with respect to the value on small scales, showing that the formalism and the conclusions are reliable and robust, fixing the range of applicability of the formalism. We discuss why the expressions derived from the equations for the potentials have limited applicability. Our results are in agreement with previous analytical estimates and show that the QSA is a reliable tool and can be used for comparison with current and future observations to constrain models beyond $Λ$CDM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源