论文标题
$ n $ -bihom-lie代数的表示,扩展和变形
Representations, extensions and deformations of $n$-BiHom-Lie algebras
论文作者
论文摘要
在本文中,我们定义并讨论$ n $ -bihom-lie代数的表示形式。我们还介绍了$t_θ$ - extensions和$t_θ^{\ ast} $ - $ n $ -n $ -bihom-lie代数的扩展名,并证明了200万美元$二维的Quadratic $ n $ n $ n $ -bihom-lie algebra对$ t_t_t_t_t_t_t_t_t_t_t_t_t_t_t_t_t_t_t_^us的必要条件。此外,我们开发了$ n $ -bihom-lie代数的单参数形式变形,我们证明了第一个和第二个同胞组适合涉及无限量,等效变形和刚性的变形理论
In this paper we define and discuss the representations of $n$-BiHom-Lie algebra. We also introduce $T_θ$-extensions and $T_θ^{\ast}$-extensions of $n$-BiHom-Lie algebras and prove the necessary and sufficient conditions for a $2m$-dimensional quadratic $n$-Bihom-Lie algebra to be isomorphic to a $T_θ^{\ast}$-extension. Moreover, we develop the one-parameter formal deformations of $n$-BiHom-Lie algebras, and we proved that the first and second cohomology groups are suitable to the deformation theory involving infinitesimals, equivalent deformations, and rigidity