论文标题
界面受控的基于粉红色的相位变更内存设备的热性能
Interface controlled thermal properties of ultra-thin chalcogenide-based phase change memory devices
论文作者
论文摘要
相变内存(PCM)是一项快速增长的技术,不仅提供了存储级记忆的进步,而且还可以使内存数据存储和处理能够克服von Neumann瓶颈。在PCM中,数据存储的主要机制是热激发。但是,关于PCM在靠近存储单元尺寸的长度尺度的PCM的热性能的研究有限,因此,界面对PCM操作的影响尚不清楚。我们的工作提出了一种新的范式,可以通过操纵相变单元和电极之间的界面热电阻来管理记忆细胞中的热传输,而无需结合其他绝缘层。实验测量结果表明,随着GST从一个晶体学结构(立方)到另一种(六边形)的转变,热边界电阻发生了很大的变化,并且随着钨触点的厚度从五个纳米降低到两个纳米。模拟表明,相变单位及其相邻层之间的界面电阻可以将直径20和120 nm的设备的复位电流降低高达〜40%和〜50%。所得的相位依赖性和几何影响对热边界电阻的影响表明,相变单位的有效导热率可以减少四倍,这是一个新的机会,以减少PCMS中的工作电流。
Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data storage and processing towards overcoming the von Neumann bottleneck. In PCMs, the primary mechanism for data storage is thermal excitation. However, there is a limited body of research regarding the thermal properties of PCMs at length scales close to the memory cell dimension and, thus, the impact of interfaces on PCM operation is unknown. Our work presents a new paradigm to manage thermal transport in memory cells by manipulating the interfacial thermal resistance between the phase change unit and the electrodes without incorporating additional insulating layers. Experimental measurements show a substantial change in thermal boundary resistance as GST transitions from one crystallographic structure (cubic) to another (hexagonal) and as the thickness of tungsten contacts is reduced from five to two nanometers. Simulations reveal that interfacial resistance between the phase change unit and its adjacent layer can reduce the reset current for 20 and 120 nm diameter devices by up to ~40% and ~50%, respectively. The resultant phase-dependent and geometric effects on thermal boundary resistance dictate that the effective thermal conductivity of the phase change unit can be reduced by a factor of four, presenting a new opportunity to reduce operating currents in PCMs.