论文标题

使用消除参数来解决离散的线性chebyshev近似问题

Using parameter elimination to solve discrete linear Chebyshev approximation problems

论文作者

Krivulin, Nikolai

论文摘要

我们考虑离散的线性chebyshev近似问题,其中通过最大程度地减少误差的最大绝对偏差来拟合线性函数的未知参数。此类问题在许多实际情况下出现的线性方程式的过度确定系统中找到了应用。当错误的分布有限制支持时,最大最大绝对偏差估计器用于统计中的回归分析。为了得出问题的直接解决方案,我们提出了基于参数消除技术的代数方法。作为该方法的关键组成部分,通过将一个参数删除的问题以及对此参数施加的盒子约束,可以通过将其减少到一个问题来解决问题。我们证明了引理与一个和两个参数的线性回归问题直接解决方案的应用。我们开发了一个程序,以在有限数量的步骤中解决多维近似(多个线性回归)问题。该过程遵循一种包括两个阶段的方法:向后消除和向前替换参数。我们描述了该过程的主要组成部分,并估计其计算复杂性。我们在MATLAB中实施符号计算,以获取两个数值示例的精确解决方案。

We consider discrete linear Chebyshev approximation problems in which the unknown parameters of linear function are fitted by minimizing the maximum absolute deviation of errors. Such problems find application in the solution of overdetermined systems of linear equations that appear in many practical contexts. The least maximum absolute deviation estimator is used in regression analysis in statistics when the distribution of errors has bounded support. To derive a direct solution of the problem, we propose an algebraic approach based on a parameter elimination technique. As a key component of the approach, an elimination lemma is proved to handle the problem by reducing it to a problem with one parameter eliminated, together with a box constraint imposed on this parameter. We demonstrate the application of the lemma to the direct solution of linear regression problems with one and two parameters. We develop a procedure to solve multidimensional approximation (multiple linear regression) problems in a finite number of steps. The procedure follows a method that comprises two phases: backward elimination and forward substitution of parameters. We describe the main components of the procedure and estimate its computational complexity. We implement symbolic computations in MATLAB to obtain exact solutions for two numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源