论文标题

有监督的PCA:一种多目标方法

Supervised PCA: A Multiobjective Approach

论文作者

Ritchie, Alexander, Balzano, Laura, Kessler, Daniel, Sripada, Chandra S., Scott, Clayton

论文摘要

监督主体组件分析(SPCA)的方法旨在将标签信息纳入主成分分析(PCA),以便提取的特征对于预测感兴趣的任务更有用。 SPCA的先前工作主要集中在优化预测误差上,并忽略了提取的特征解释的最大化方差的价值。我们为SPCA提出了一种共同解决这两个目标的新方法,并从经验上证明我们的方法主导了现有方法,即在预测误差和变异方面都超越了它们的表现。我们的方法适应了任意监督的学习损失,并通过统计重新制定提供了广义线性模型的新型低级扩展。

Methods for supervised principal component analysis (SPCA) aim to incorporate label information into principal component analysis (PCA), so that the extracted features are more useful for a prediction task of interest. Prior work on SPCA has focused primarily on optimizing prediction error, and has neglected the value of maximizing variance explained by the extracted features. We propose a new method for SPCA that addresses both of these objectives jointly, and demonstrate empirically that our approach dominates existing approaches, i.e., outperforms them with respect to both prediction error and variation explained. Our approach accommodates arbitrary supervised learning losses and, through a statistical reformulation, provides a novel low-rank extension of generalized linear models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源