论文标题
一个经典的,非单明的,弹跳的宇宙
A classical, non-singular, bouncing universe
论文作者
论文摘要
我们提出了一个不违反无效能量条件(NEC)的经典,非弹跳宇宙学的模型。该字段内容是一般相对论和带有规范动力学项的真实标量场,并且仅适用于约旦框架中标量字段的可重新分解,多项式类型的自我相互作用。宇宙开始占主导地位的真空能量,并以$ t = - \ infty $收缩。我们认为一个封闭的宇宙具有积极的空间曲率,这是导致宇宙弹跳而没有任何NEC违规行为的。 RICCI标量和标量场之间的$ rx^2 $耦合将标量从初始假真空驱动到弹跳期间的真空真空。该模型在整个演变过程中都是子planckian,每个维度参数都低于有效的场理论规模$ m_p $,因此我们期望没有幽灵型或速度不稳定性。该模型解决了地平线问题,并将共同移动的粒子大地测量学扩展到了过去的无穷大,从而导致了无奇异性的地理上完整的宇宙。我们在某些近似值下以数值方式求解弗里德曼方程和运动的标量场方程。
We present a model for a classical, non-singular bouncing cosmology without violation of the null energy condition (NEC). The field content is General Relativity plus a real scalar field with a canonical kinetic term and only renormalizable, polynomial type self-interaction for the scalar field in the Jordan frame. The universe begins vacuum-energy dominated and is contracting at $t=-\infty$. We consider a closed universe with a positive spatial curvature, which is responsible for the universe bouncing without any NEC violation. An $Rϕ^2$ coupling between the Ricci scalar and the scalar field drives the scalar from the initial false vacuum to the true vacuum during the bounce. The model is sub-Planckian throughout its evolution and every dimensionful parameter is below the effective field theory scale $M_P$, so we expect no ghost-type or tachyonic instabilities. This model solves the horizon problem and extends co-moving particle geodesics to past infinity, resulting in a geodesically complete universe without singularities. We solve the Friedman equations and the scalar field equation of motion numerically, and analytically under certain approximations.