论文标题
Perydinamic分数$ p $ -laplacian的光谱稳定性
Spectral stability for the perydinamic fractional $p$-Laplacian
论文作者
论文摘要
在这项工作中,我们分析了Peridynamic分数$ p $ -laplacian,$( - δ_p)_Δ^s $的行为,在限制过程$δ\ to0^+$或$Δ\ to+\ to+\ infty $。我们证明了光谱收敛到经典$ p $ -laplacian,在合适的比例尺为$δ\ to0^+$,而分数$ p $ -laplacian作为$δ\ to+\ infty $。
In this work we analyze the behavior of the spectrum of the peridynamic fractional $p$-Laplacian, $(-Δ_p)_δ^s$, under the limit process $δ\to0^+$ or $δ\to+\infty$. We prove spectral convergence to the classical $p$-Laplacian under a suitable scaling as $δ\to0^+$ and to the fractional $p$-Laplacian as $δ\to+\infty$.