论文标题

解决双向目标旅行小偷问题的加权和加权方法

A weighted-sum method for solving the bi-objective traveling thief problem

论文作者

Chagas, Jonatas B. C., Wagner, Markus

论文摘要

许多实际优化问题具有多个相互作用的组件。它们中的每一个都可以是NP固定的,它们可以相互冲突,即,一个组件的最佳解决方案并不一定代表其他组件的最佳解决方案。对于单瞄准式公式来说,这可能是一个挑战,在这种配方中,每个组件对整体解决方案质量的影响都可能因实例而异。在本文中,我们研究了旅行小偷问题的双目标配方,该公式的成分是旅行销售人员的问题和背包问题。我们提出了一种加权和方法,该方法利用了现有启发式方法的随机版本,在最近的9个实例中的6个实例中,参与者的表现优于参与者,并且为379个单目标问题实例找到了新的最佳解决方案。

Many real-world optimization problems have multiple interacting components. Each of these can be NP-hard and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源