论文标题
随机重复第二价格拍卖的有效算法
Efficient Algorithms for Stochastic Repeated Second-price Auctions
论文作者
论文摘要
在各种营销任务中,制定有效的连续拍卖策略是重复拍卖的重要挑战。在这种情况下,竞标代理只有在赢得拍卖赢得拍卖时,就可以获得有关销售商品的价值和其他投标人的行为的信息。由于存在依赖于动作的审查,标准匪徒理论不适用于此问题。 在这项工作中,我们考虑了第二价格拍卖,并为此任务提出了新颖,有效的UCB样算法。假设对手投标的分布规律性,则在随机环境中分析这些算法。我们提供遗憾的上限,以量化文献中提出的基线算法的改进。在拍卖项目的价值较低的情况下,改善尤其重要,从而使最坏的遗憾的顺序降低了。我们进一步提供了适用于通用UCB样策略的此问题的第一个参数下限。作为替代方案,我们提出了更可解释的策略,这些策略让人想起探索,然后提交匪徒算法。我们对这类策略提供了批判性分析,既显示了重要的优势和限制。特别是,我们提供了最小的下限,并提出了此类几乎最小的实例。
Developing efficient sequential bidding strategies for repeated auctions is an important practical challenge in various marketing tasks. In this setting, the bidding agent obtains information, on both the value of the item at sale and the behavior of the other bidders, only when she wins the auction. Standard bandit theory does not apply to this problem due to the presence of action-dependent censoring. In this work, we consider second-price auctions and propose novel, efficient UCB-like algorithms for this task. These algorithms are analyzed in the stochastic setting, assuming regularity of the distribution of the opponents' bids. We provide regret upper bounds that quantify the improvement over the baseline algorithm proposed in the literature. The improvement is particularly significant in cases when the value of the auctioned item is low, yielding a spectacular reduction in the order of the worst-case regret. We further provide the first parametric lower bound for this problem that applies to generic UCB-like strategies. As an alternative, we propose more explainable strategies which are reminiscent of the Explore Then Commit bandit algorithm. We provide a critical analysis of this class of strategies, showing both important advantages and limitations. In particular, we provide a minimax lower bound and propose a nearly minimax-optimal instance of this class.