论文标题
序列标记的神经潜在依赖模型
Neural Latent Dependency Model for Sequence Labeling
论文作者
论文摘要
序列标签是机器学习,自然语言处理和许多其他领域的基本问题。序列标记的经典方法是线性链条件随机场(CRF)。当与神经网络编码器结合使用时,它们在许多序列标签任务中都能达到非常好的性能。线性链CRF的一个局限性是它们无法在标签之间建模远程依赖性。高阶CRF通过对依赖性建模不超过其顺序来扩展线性链CRF,但是计算复杂性以指数增长的顺序增长。在本文中,我们提出了神经潜在依赖模型(NLDM),该模型模型具有潜在树结构的标签之间的任意长度依赖性。我们开发了一种模型的端到端培训算法和多项式推理算法。我们在合成数据集和实际数据集上评估了我们的模型,并表明我们的模型的表现优于强基础。
Sequence labeling is a fundamental problem in machine learning, natural language processing and many other fields. A classic approach to sequence labeling is linear chain conditional random fields (CRFs). When combined with neural network encoders, they achieve very good performance in many sequence labeling tasks. One limitation of linear chain CRFs is their inability to model long-range dependencies between labels. High order CRFs extend linear chain CRFs by modeling dependencies no longer than their order, but the computational complexity grows exponentially in the order. In this paper, we propose the Neural Latent Dependency Model (NLDM) that models dependencies of arbitrary length between labels with a latent tree structure. We develop an end-to-end training algorithm and a polynomial-time inference algorithm of our model. We evaluate our model on both synthetic and real datasets and show that our model outperforms strong baselines.