论文标题
通过学习与任务相关的关键点来解开密集的结
Untangling Dense Knots by Learning Task-Relevant Keypoints
论文作者
论文摘要
由于高维配置空间,视觉均匀性,自我观察和复杂的动力学,解开绳索,电线和电缆对于机器人来说是一项具有挑战性的任务。我们认为,密集(紧密)的结缺乏自身交流之间的空间,并提出了一种在配置中使用学习的几何结构的迭代方法。我们将其实例化为一种算法,绿巨人:从学识渊博的关键点中划分的层次结构,将基于学习的感知与几何策划者结合在一起,将双边机器人引导到解开障碍结。为了评估该策略,我们在新型的模拟环境中进行了实验,以不同的打结类型和纹理以及使用DA Vinci手术机器人的物理系统建模电缆。我们发现,绿巨人能够以密集的图形和过度结的缝合电缆解开电缆,并推广到各种纹理和外观。我们将绿巨人的两种变体与三个基线进行比较,并观察到与下一个最佳基线相比,绿巨人在物理系统上的成功率提高了43.3%。绿巨人成功地将电缆从密集的初始配置中解开,其中最多包含两个副手和图八个结的378个模拟实验中的97.9%,每次试验平均动作12.1。在物理实验中,绿巨人取得了61.7%的障碍成功,平均每次试验为8.48个动作。可以在https://tinyurl.com/y3a88ycu上找到补充材料,代码和视频。
Untangling ropes, wires, and cables is a challenging task for robots due to the high-dimensional configuration space, visual homogeneity, self-occlusions, and complex dynamics. We consider dense (tight) knots that lack space between self-intersections and present an iterative approach that uses learned geometric structure in configurations. We instantiate this into an algorithm, HULK: Hierarchical Untangling from Learned Keypoints, which combines learning-based perception with a geometric planner into a policy that guides a bilateral robot to untangle knots. To evaluate the policy, we perform experiments both in a novel simulation environment modelling cables with varied knot types and textures and in a physical system using the da Vinci surgical robot. We find that HULK is able to untangle cables with dense figure-eight and overhand knots and generalize to varied textures and appearances. We compare two variants of HULK to three baselines and observe that HULK achieves 43.3% higher success rates on a physical system compared to the next best baseline. HULK successfully untangles a cable from a dense initial configuration containing up to two overhand and figure-eight knots in 97.9% of 378 simulation experiments with an average of 12.1 actions per trial. In physical experiments, HULK achieves 61.7% untangling success, averaging 8.48 actions per trial. Supplementary material, code, and videos can be found at https://tinyurl.com/y3a88ycu.