论文标题

失去弧的机器人:自我监督的学习,以动态操纵固定端电缆

Robots of the Lost Arc: Self-Supervised Learning to Dynamically Manipulate Fixed-Endpoint Cables

论文作者

Zhang, Harry, Ichnowski, Jeffrey, Seita, Daniel, Wang, Jonathan, Huang, Huang, Goldberg, Ken

论文摘要

我们探索高速机器人手臂运动可以动态地操纵电缆,以在障碍物上拱顶,敲基座的对象以及在障碍物之间编织。在本文中,我们提出了一个自我监督的学习框架,该框架使UR5机器人能够执行这三个任务。该框架为机器人臂找到了一个3D顶点,该框架与特定于任务的轨迹函数一起定义了一种动态运动,该运动动态操纵电缆以使用障碍物和目标位置不同的任务执行任务。轨迹函数计算被约束以保持在关节限制范围内并通过反复求解二次程序以找到最短且最快的可行运动的最小值运动。我们试验了5条具有不同厚度和质量的物理电缆,并将性能与人类选择顶点的两个基准相比。结果表明,在这三个任务中具有固定顶点的基线达到了51.7%,36.7%和15.0%的成功率,并且具有人类指定的,特定于任务的APEX点的基线分别达到66.7%,56.7%,56.7%,56.7%,56.7%和15.0%的成功率,而使用了15.0%的成功率,而使用机器人可以达到51%,而售价为6.7%。编织60.0%。代码,数据和补充材料可在https://sites.google.com/berkeley.edu/dynrope/home上找到。

We explore how high-speed robot arm motions can dynamically manipulate cables to vault over obstacles, knock objects from pedestals, and weave between obstacles. In this paper, we propose a self-supervised learning framework that enables a UR5 robot to perform these three tasks. The framework finds a 3D apex point for the robot arm, which, together with a task-specific trajectory function, defines an arcing motion that dynamically manipulates the cable to perform tasks with varying obstacle and target locations. The trajectory function computes minimum-jerk motions that are constrained to remain within joint limits and to travel through the 3D apex point by repeatedly solving quadratic programs to find the shortest and fastest feasible motion. We experiment with 5 physical cables with different thickness and mass and compare performance against two baselines in which a human chooses the apex point. Results suggest that a baseline with a fixed apex across the three tasks achieves respective success rates of 51.7%, 36.7%, and 15.0%, and a baseline with human-specified, task-specific apex points achieves 66.7%, 56.7%, and 15.0% success rate respectively, while the robot using the learned apex point can achieve success rates of 81.7% in vaulting, 65.0% in knocking, and 60.0% in weaving. Code, data, and supplementary materials are available at https: //sites.google.com/berkeley.edu/dynrope/home.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源