论文标题

使用逼真的深度感知噪声模型的多代理主动搜索

Multi-Agent Active Search using Realistic Depth-Aware Noise Model

论文作者

Ghods, Ramina, Durkin, William J., Schneider, Jeff

论文摘要

在未知环境中,积极搜索感兴趣的对象具有许多机器人应用,包括搜索和救援,检测气体泄漏或定位动物偷猎者。现有的算法通常优先考虑感兴趣的对象的位置准确性,而其他实际问题(例如对象检测作为距离的函数和视线的可靠性)仍然在很大程度上被忽略。此外,在许多主动搜索方案中,通信基础架构可能是不可靠的或不建立的,这使得对多种代理的集中控制不切实际。我们提出了一种称为噪声吸引的汤普森采样(NAT)的算法,该算法解决了这些问题的多个基于地面机器人的问题,这些机器人从单眼光学成像和深度图中考虑了两个感官信息来源。通过利用汤普森采样,NAT可以在多种药物之间进行分散的协调。 NAT还考虑了深度和环境遮挡的对象检测不确定性,并在剩下的感兴趣对象数量的不可知中进行操作。使用仿真结果,我们表明NAT显着胜过现有方法,例如信息策略或详尽的搜索。我们使用Airsim插件在虚幻引擎4游戏开发平台中创建的伪现实环境展示了NAT的现实世界可行性。

The active search for objects of interest in an unknown environment has many robotics applications including search and rescue, detecting gas leaks or locating animal poachers. Existing algorithms often prioritize the location accuracy of objects of interest while other practical issues such as the reliability of object detection as a function of distance and lines of sight remain largely ignored. Additionally, in many active search scenarios, communication infrastructure may be unreliable or unestablished, making centralized control of multiple agents impractical. We present an algorithm called Noise-Aware Thompson Sampling (NATS) that addresses these issues for multiple ground-based robots performing active search considering two sources of sensory information from monocular optical imagery and depth maps. By utilizing Thompson Sampling, NATS allows for decentralized coordination among multiple agents. NATS also considers object detection uncertainty from depth as well as environmental occlusions and operates while remaining agnostic of the number of objects of interest. Using simulation results, we show that NATS significantly outperforms existing methods such as information-greedy policies or exhaustive search. We demonstrate the real-world viability of NATS using a pseudo-realistic environment created in the Unreal Engine 4 game development platform with the AirSim plugin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源