论文标题
一种半分析方法,将钻孔液泄漏到断裂的形成中
A Semi-Analytical Approach to Model Drilling Fluid Leakage Into Fractured Formation
论文作者
论文摘要
钻孔时循环丧失是一个具有挑战性的问题,可能会中断操作,降低效率并可能污染地下。当钻孔孔拦截导电断层或裂缝时,循环丢失表现为钻孔,修理或胶结液的部分或完全逃脱到周围的岩层中。损耗材料(LCM)经常用于缓解过程。了解断裂有效的液压特性和流体泄漏行为对于减轻此问题至关重要。裂缝中流体流量的分析模型是可以快速部署的工具,以评估循环丢失并进行诊断,包括泄漏率下降,有效的断裂电导率和LCM的选择。这样的模型应适用于牛顿和非牛顿屈服压力流体,其中流体流变学是流体流量和剪切应力的非线性函数。在这项工作中,开发了一种新的半分析溶液,以模拟断裂培养基中非牛顿钻孔液的流动。该溶液模型适用于具有屈服能力law(Herschel-Bulkley)的各种流体类型。我们使用基于Cauchy方程的高分辨率有限元模拟来验证我们的解决方案。我们还生成类型曲线并将其与文献中的其他曲线进行比较。我们证明了所提出的模型对于两个遇到循环丢失的现场案例的适用性。为了解决地下不确定性,我们将开发的解决方案与蒙特 - 卡洛相结合,并产生概率预测。该解决方案方法可以估计裂缝电导率的范围,该裂缝电导率通过断裂液压孔进行参数,以及时间依赖性的流体损耗率,可以预测流体损失的累积体积。所提出的方法是准确有效的,足以支持实时钻井操作的决策。
Loss of circulation while drilling is a challenging problem that may interrupt operations, reduce efficiency, and may contaminate the subsurface. When a drilled borehole intercepts conductive faults or fractures, lost circulation manifests as a partial or total escape of drilling, workover, or cementing fluids, into the surrounding rock formations. Loss control materials (LCM) are often used in the mitigation process. Understanding the fracture effective hydraulic properties and fluid leakage behavior is crucial to mitigate this problem. Analytical modeling of fluid flow in fractures is a tool that can be quickly deployed to assess lost circulation and perform diagnostics, including leakage rate decline, effective fracture conductivity, and selection of the LCM. Such models should be applicable to Newtonian and non-Newtonian yield-stress fluids, where the fluid rheology is a nonlinear function of fluid flow and shear stress. In this work, a new semi-analytical solution is developed to model the flow of non-Newtonian drilling fluid in a fractured medium. The solution model is applicable for various fluid types exhibiting yield-power-law (Herschel-Bulkley). We use high-resolution finite-element simulations based on the Cauchy equation to verify our solutions. We also generate type-curves and compare them to others in the literature. We demonstrate the applicability of the proposed model for two field cases encountering lost circulations. To address the subsurface uncertainty, we combine the developed solutions with Monte-Carlo and generate probabilistic predictions. The solution method can estimate the range of fracture conductivity, parametrized by the fracture hydraulic aperture, and time-dependent fluid loss rate that can predict the cumulative volume of lost fluid. The proposed approach is accurate and efficient enough to support decision-making for real-time drilling operations.