论文标题
在零散的希尔伯特空间中的多体定位
Many-body localization in a fragmented Hilbert space
论文作者
论文摘要
我们研究了具有强烈的希尔伯特空间碎片化的成对模型中的多体定位(MBL)。我们表明,几个Krylov子空间在热力学极限中具有千古统计,也具有比整个希尔伯特空间慢得多的尺寸,但仍指数级。这样的属性使我们能够研究系统中的MBL相过渡,包括超过50美元的旋转。我们认为的不同的Krylov空间显示了多体定位过渡的明显签名,均在其水平间距比的分布的kullback-leibler差异中及其纠缠属性。但是它们还提供了具有系统大小的不同尺度。根据子空间的不同,临界障碍强度几乎可以独立于系统尺寸,或者相反显示与旋转数量大约线性增加。
We study many-body localization (MBL) in a pair-hopping model exhibiting strong fragmentation of the Hilbert space. We show that several Krylov subspaces have both ergodic statistics in the thermodynamic limit and a dimension that scales much slower than the full Hilbert space, but still exponentially. Such a property allows us to study the MBL phase transition in systems including more than $50$ spins. The different Krylov spaces that we consider show clear signatures of a many-body localization transition, both in the Kullback-Leibler divergence of the distribution of their level spacing ratio and their entanglement properties. But they also present distinct scalings with system size. Depending on the subspace, the critical disorder strength can be nearly independent of the system size or conversely show an approximately linear increase with the number of spins.