论文标题

关于复合假设的二元状态歧视的误差指数

On the error exponents of binary state discrimination with composite hypotheses

论文作者

Mosonyi, Milán, Szilágyi, Zsombor, Weiner, Mihály

论文摘要

二进制状态歧视中两种类型的错误之间的权衡可以通过各种错误指数在渐近学中进行量化。在简单的I.I.D.假设,每个指数都等于两个状态的差异(伪距离)。在复合假设的情况下,以$ r,s $表示的一组表示,一个人总是具有不平等的$ \ mathrm {e}(r \ | s)\ le \ le \ mathrm {e}(r \ | s)$持有。复合指数与最坏的成对指数之间的关系可能受许多因素的影响:考虑的指数类型;问题是经典还是量子;代表假设的集合的基数和几何特性;而且,在上面的基础上,可能的基础希尔伯特空间是有限的还是无限的。 我们在本文中的主要贡献是大大阐明了这一景观:我们展示了迄今未研究的案例的明确例子,在这些案例中,上述不平等现象无法保持平等,而我们也证明了各种一般阶层歧视问题的平等。特别是,我们表明,即使在经典的情况下,如果允许系统是无限维度的,那么任何误差指数都可能失败,而替代假设包含无限的许多状态。此外,我们表明,在量子案例中,严格的不等式是通用行为,从任何一对任何维度的非交通密度运算符开始,对于任何指数,就可以构建一个简单的无效假设的示例,并且只有两个状态仅由两个状态组成,因此,具有简单的假设,使得与既定的代表性相同。

The trade-off between the two types of errors in binary state discrimination may be quantified in the asymptotics by various error exponents. In the case of simple i.i.d. hypotheses, each of these exponents is equal to a divergence (pseudo-distance) of the two states. In the case of composite hypotheses, represented by sets of states $R,S$, one always has the inequality $\mathrm{e}(R\|S)\le \mathrm{E}(R\|S)$, where $\mathrm{e}$ is the exponent, $\mathrm{E}$ is the corresponding divergence, and the question is whether equality holds. The relation between the composite exponents and the worst pairwise exponents may be influenced by a number of factors: the type of exponents considered; whether the problem is classical or quantum; the cardinality and the geometric properties of the sets representing the hypotheses; and, on top of the above, possibly whether the underlying Hilbert space is finite- or infinite-dimensional. Our main contribution in this paper is clarifying this landscape considerably: We exhibit explicit examples for hitherto unstudied cases where the above inequality fails to hold with equality, while we also prove equality for various general classes of state discrimination problems. In particular, we show that equality may fail for any of the error exponents even in the classical case, if the system is allowed to be infinite-dimensional, and the alternative hypothesis contains countably infinitely many states. Moreover, we show that in the quantum case strict inequality is the generic behavior in the sense that, starting from any pair of non-commuting density operators of any dimension, and for any of the exponents, it is possible to construct an example with a simple null-hypothesis and an alternative hypothesis consisting of only two states, such that strict inequality holds for the given exponent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源