论文标题

贝叶斯重建傅里叶对

Bayesian Reconstruction of Fourier Pairs

论文作者

Tobar, Felipe, Araya-Hernández, Lerko, Huijse, Pablo, Djurić, Petar M.

论文摘要

在许多数据驱动的应用程序中,例如心律不齐,干扰法或音频压缩的检测,观察在时间或频域中含糊不清:时间观察使我们可以研究信号的频谱(例如,音频),而频率符号观察则用于重建时间/Spatial数据(E.G.G.G.,MRI)。光谱分析的经典方法依赖于i)时间和频域的离散化,其中快速傅立叶变换是作为\ textit {de facto}省级资源或ii)具有封闭形式光谱的严格参数模型。但是,一般文献无法满足缺失的观察结果和噪声浪费的数据。我们的目的是解决缺乏对时间域和频域中不清楚的数据的原则处理方法,这种方式可用于缺失或嘈杂的观察,同时有效地模型不确定性。为了实现这一目标,我们首先为信号的时间和光谱表示定义一个联合概率模型,然后根据观察结果执行贝叶斯模型更新,从而共同重建完整的(潜在的)时间和频率表示。从经典的光谱分析角度分析了所提出的模型,并通过直观的示例说明了其实现。最后,我们表明,所提出的模型能够对现实世界音频,医疗保健和天文学信号进行联合时间和频率重建,同时成功处理丢失的数据并自然处理不确定性(噪声),以对经典和现代方法进行光谱估算。

In a number of data-driven applications such as detection of arrhythmia, interferometry or audio compression, observations are acquired indistinctly in the time or frequency domains: temporal observations allow us to study the spectral content of signals (e.g., audio), while frequency-domain observations are used to reconstruct temporal/spatial data (e.g., MRI). Classical approaches for spectral analysis rely either on i) a discretisation of the time and frequency domains, where the fast Fourier transform stands out as the \textit{de facto} off-the-shelf resource, or ii) stringent parametric models with closed-form spectra. However, the general literature fails to cater for missing observations and noise-corrupted data. Our aim is to address the lack of a principled treatment of data acquired indistinctly in the temporal and frequency domains in a way that is robust to missing or noisy observations, and that at the same time models uncertainty effectively. To achieve this aim, we first define a joint probabilistic model for the temporal and spectral representations of signals, to then perform a Bayesian model update in the light of observations, thus jointly reconstructing the complete (latent) time and frequency representations. The proposed model is analysed from a classical spectral analysis perspective, and its implementation is illustrated through intuitive examples. Lastly, we show that the proposed model is able to perform joint time and frequency reconstruction of real-world audio, healthcare and astronomy signals, while successfully dealing with missing data and handling uncertainty (noise) naturally against both classical and modern approaches for spectral estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源