论文标题
欧洲地区的三角研究与创新合作
Triangular research and innovation collaborations in the European area
论文作者
论文摘要
在当前的研究中,我们研究了旨在揭示三角形形成模式(任何三个节点之间完全连接的网络)的专利和欧洲框架计划(FPS)的多重网络。更具体地说,多重网络由两个层组成,其节点是nuts2区域。在第一层中,我们描绘了为创建专利而合作的发明人的区域,第二层是欧洲框架计划(FP)资助的项目中的第二层。当来自不同地区的科学家或发明者协作时,存在两个节点之间的联系。我们将网络暂时分为28个较短的子网络,每个工作范围为6年,并计算在6年结束时形成的三角形数量。接下来,我们将再次创建28个六年的随机网络的数据进行洗牌,以确定是否有一种隐藏的机制有利于非随机行为。使用Z分数比较实际和洗牌的数据,这是对标准偏差之间差异的度量。此外,我们使用聚类系数重复相同的分析,即三角形数量(可能的三角形)数量是三角形的数量。结果表明,三角形FP的合作往往比随机的FP协作受到青睐,而在专利中,案件的恰恰相反。此外,使用三角形的结果往往更全面,而不是聚类系数的结果。最后,我们确定哪个螺母2区经常在任何一层中都表现出高聚类系数,并且为所有区域提供了具有这些值的地图。这项研究的结果可以帮助政策使组织了解补贴研究和专利创新协作网络的空间维度。
In the current study, we examine the multiplex network of patents and European Framework Programmes (FPs) aiming to uncover temporal variations in the formation patterns of triangles (a fully connected network between any three nodes). More specifically, the multiplex network consists of two layers whose nodes are the NUTS2 regions. On the first layer we depict the regions of the inventors that collaborated for the creation of a patent, and on the second those of the scientists in European Framework Programme (FP) funded projects. A link between two nodes exists when scientists or inventors from different regions collaborate. We split the network temporally into 28 shorter sub-networks with a span of 6 years each, and calculate the number of triangles formed at the end of the 6-year period. Next, we shuffle the data creating again 28 six-year randomized networks, in order to identify whether there is a hidden mechanism that favors a non-random behavior. Real and shuffled data are compared using a z-score, a measure of the differences of standard deviations between them. In addition, we repeat the same analysis using the clustering coefficient, which is the number of triangles over the number of triples (possible triangles). The results show that triangular FP collaborations tend to be favored over random ones, while in patents the case is strongly the opposite. Furthermore, results using triangles tend to be more comprehensive as opposed to those of the clustering coefficient. Finally, we identify which NUTS2 regions frequently exhibit a high clustering coefficient in either of the layers, and we present a map with these values for all regions. The results of this research can help policy making organizations understand the spatial dimension of subsidized research and patented innovation collaboration networks.