论文标题

神经体系结构搜索具有高效的多目标进化框架

Neural Architecture Search with an Efficient Multiobjective Evolutionary Framework

论文作者

Calisto, Maria Baldeon, Lai-Yuen, Susana

论文摘要

深度学习方法已在解决许多复杂的任务(例如图像分类和细分,语音识别和机器翻译)方面变得非常成功。然而,由于大量的超参数搜索空间,较长的培训时间以及缺乏超参数选择的技术指南,手动设计针对特定问题的神经网络非常困难且耗时。此外,大多数网络都是高度复杂的,特定于任务的和过度的。最近,已经提出了多目标神经体系结构搜索(NAS)方法来自动化准确有效的体系结构的设计。但是,他们仅优化架构的宏观或微观结构,要求需要手动定义未设置的超参数,并且不使用在优化过程中产生的信息来提高搜索的效率。在这项工作中,我们提出了Emonas,这是一种有效的多目标神经体系结构搜索框架,用于自动设计神经体系结构,同时优化网络的准确性和大小。 Emonas由一个搜索空间组成,该搜索空间考虑了体系结构的宏观和微观结构,以及基于替代的基于替代的多目标进化算法,该算法有效地使用随机的森林替代物和指导选择概率来有效地搜索最佳的超级参数。对Emonas进行了对MICCAI ACDC挑战的3D心脏分割的任务,这对于疾病诊断,风险评估和治疗决策至关重要。在所有评估指标中,使用Emonas发现的架构排名在挑战指标的前十名中,与其他方法相当,同时将搜索时间降低了50%以上,并且参数数量较少。

Deep learning methods have become very successful at solving many complex tasks such as image classification and segmentation, speech recognition and machine translation. Nevertheless, manually designing a neural network for a specific problem is very difficult and time-consuming due to the massive hyperparameter search space, long training times, and lack of technical guidelines for the hyperparameter selection. Moreover, most networks are highly complex, task specific and over-parametrized. Recently, multiobjective neural architecture search (NAS) methods have been proposed to automate the design of accurate and efficient architectures. However, they only optimize either the macro- or micro-structure of the architecture requiring the unset hyperparameters to be manually defined, and do not use the information produced during the optimization process to increase the efficiency of the search. In this work, we propose EMONAS, an Efficient MultiObjective Neural Architecture Search framework for the automatic design of neural architectures while optimizing the network's accuracy and size. EMONAS is composed of a search space that considers both the macro- and micro-structure of the architecture, and a surrogate-assisted multiobjective evolutionary based algorithm that efficiently searches for the best hyperparameters using a Random Forest surrogate and guiding selection probabilities. EMONAS is evaluated on the task of 3D cardiac segmentation from the MICCAI ACDC challenge, which is crucial for disease diagnosis, risk evaluation, and therapy decision. The architecture found with EMONAS is ranked within the top 10 submissions of the challenge in all evaluation metrics, performing better or comparable to other approaches while reducing the search time by more than 50% and having considerably fewer number of parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源