论文标题

一类具有较高导数场方程的QFT,导致粒子激发的标准色散关系

A class of QFTs with higher derivative field equations leading to standard dispersion relation for the particle excitations

论文作者

Padmanabhan, T.

论文摘要

给定任何(Feynman)的传播剂(Feynman)是Lorentz和翻译不变的,可以为标量场构建一个动作函数,使得通过路径积分量化获得的量子场理论会导致该传播器。通常,这种理论将涉及该田间的衍生物高于两个田间,甚至可能涉及无限顺序的衍生物。给定繁殖器的极点确定了该领域激发的分散关系。我表明,即使Lagrangian包含无限顺序的衍生物,也可以构建分散关系与标准Klein-Gordan领域相同的字段理论。我提供了这种情况的具体示例,从传播器开始,该传播器结合了时空的零点长度的影响。我将路径积分方法与基于操作员的替代方法进行比较,并突出使用前者的优势。

Given any (Feynman) propagator which is Lorentz and translation invariant, it is possible to construct an action functional for a scalar field such that the quantum field theory, obtained by path integral quantization, leads to this propagator. In general, such a theory will involve derivatives of the field higher than two and can even involve derivatives of infinite order. The poles of the given propagator determine the dispersion relation for the excitations of this field. I show that it is possible to construct field theories in which the dispersion relation is the same as that of standard Klein-Gordan field, even though the Lagrangian contains derivatives of infinite order. I provide a concrete example of this situation starting from a propagator which incorporates the effects of the zero-point-length of the spacetime. I compare the path integral approach with an alternative, operator-based approach, and highlight the advantages of using the former.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源