论文标题
在测试对称多项式函数阳性的算法上
On algorithms for testing positivity of symmetric polynomial functions
论文作者
论文摘要
我们表明,$ \ mathbb {r} _+^n $以及$ \ mathbb {r}^n $在$ n \ ge2 $变量中最多可在$ n \ ge2 $变量中以$ \ mathrm {poly} $ time的ungoriths求解。对于真实的对称四分之一,我们发现在$ \ mathrm {lin}(n)$时间中运行的显式判别和相关的枫木算法。
We show that positivity on $\mathbb{R}_+^n$ and on $\mathbb{R}^n$ of real symmetric polynomials of degree at most $p$ in $n\ge2$ variables is solvable by algorithms running in $\mathrm{poly}(n)$ time. For real symmetric quartics, we find explicit discriminants and related Maple algorithms running in $\mathrm{lin}(n)$ time.