论文标题
量子变速器引起的超速气体中磁界面的断裂
Quantum-torque-induced breaking of magnetic interfaces in ultracold gases
论文作者
论文摘要
自旋动力学中的各种物理效应在不同的磁性材料之间的接口处出现。带有隔离磁性结构的工程系统已用于实现自旋晶体管,记忆和其他自旋设备。但是,由于障碍和损失,固态系统中的实验可能难以解释。在这里,我们使用超声剂量气体的相干耦合混合物实现了磁连接的类似物。原子气体的空间不均匀性使系统从具有振荡磁化的区域(类似于在外部横向场的存在下类似于磁性物质)变为具有定义磁化的区域,例如具有铁电磁材料的区域,将其行为改变。从远程平衡完全极化状态开始,磁接口会迅速形成。在界面上,我们观察到短波长磁性波的形成。它们是由对自旋电流的量子扭矩贡献产生的,并在磁化强度中产生强烈的空间反相关。我们的结果建立了超冷气体作为研究在固态系统中不容易访问的远程平衡自旋动力学研究的平台。
A rich variety of physical effects in spin dynamics arises at the interface between different magnetic materials. Engineered systems with interlaced magnetic structures have been used to implement spin transistors, memories and other spintronic devices. However, experiments in solid state systems can be difficult to interpret because of disorder and losses. Here, we realize analogues of magnetic junctions using a coherently-coupled mixture of ultracold bosonic gases. The spatial inhomogeneity of the atomic gas makes the system change its behavior from regions with oscillating magnetization -- resembling a magnetic material in the presence of an external transverse field -- to regions with a defined magnetization, as in magnetic materials with a ferromagnetic anisotropy stronger than external fields. Starting from a far-from-equilibrium fully polarized state, magnetic interfaces rapidly form. At the interfaces, we observe the formation of short-wavelength magnetic waves. They are generated by a quantum torque contribution to the spin current and produce strong spatial anticorrelations in the magnetization. Our results establish ultracold gases as a platform for the study of far-from-equilibrium spin dynamics in regimes that are not easily accessible in solid-state systems.