论文标题
瑟斯顿的分裂和C-principles
Thurston's fragmentation and c-principles
论文作者
论文摘要
在本文中,我们将瑟斯顿的最初想法概述为所谓的马瑟·瑟斯顿(Mather-Thurston)的《叶面捆绑包》,以证明该定理的PL同型同型定理的新变体,接触符号。这些版本回答了Gelfand -Fuks和Greenberg提出的有关PL叶子和Rybicki的问题。与众所周知的Segal-Mcduff证明Mather-Thurston定理的证明相比,原始的Thurston技术的有趣观点是,它提供了一个紧凑的C-Principle定理,而不知道相关的本地陈述在开放球上。在附录中,我们表明瑟斯顿的碎片化意味着使用斑点复合物的非 - 亚伯繁殖二元定理及其概括。
In this paper, we generalize the original idea of Thurston for the so called Mather-Thurston's theorem for foliated bundles to prove new variants of this theorem for PL homeomorphisms, contactormorphisms. These versions answer questions posed by Gelfand -Fuks and Greenberg on PL foliations and Rybicki on contactomorphisms. The interesting point about the original Thurston's technique compared to the better known Segal-McDuff's proof of the Mather-Thurston theorem is that it gives a compactly supported c-principle theorem without knowing the relevant local statement on open balls. In the appendix, we show that Thurston's fragmentation implies the non-abelian Poincare duality theorem and its generalization using blob complexes.