论文标题

来自随机数值线性代数的量子启发算法

Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

论文作者

Chepurko, Nadiia, Clarkson, Kenneth L., Horesh, Lior, Lin, Honghao, Woodruff, David P.

论文摘要

我们创建经典的(非量词)动态数据结构,支持针对推荐系统和最小二乘回归的查询,这些查询与量子类似物相当。近年来,这种算法的去量化引起了人们的关注。我们为这些问题获得了更清晰的界限。更重要的是,我们通过争辩说,这些问题的先前量子启发的算法正在做杠杆或脊杠杆得分取样,以实现这些改进。这些是随机数值线性代数中强大而标准的技术。有了这种识别,我们能够在数值线性代数中使用大量工作来获得这些问题的算法,这些算法比现有方法更简单或更快(或两者兼而有之)。我们的实验表明,所提出的数据结构在现实世界数据集上也很好地工作。

We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression that are comparable to their quantum analogues. De-quantizing such algorithms has received a flurry of attention in recent years; we obtain sharper bounds for these problems. More significantly, we achieve these improvements by arguing that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise; these are powerful and standard techniques in randomized numerical linear algebra. With this recognition, we are able to employ the large body of work in numerical linear algebra to obtain algorithms for these problems that are simpler or faster (or both) than existing approaches. Our experiments demonstrate that the proposed data structures also work well on real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源