论文标题

图像聚类使用增强的生成对抗网络和信息最大化

Image Clustering using an Augmented Generative Adversarial Network and Information Maximization

论文作者

Ntelemis, Foivos, Jin, Yaochu, Thomas, Spencer A.

论文摘要

由于未标记的数据集的可用性增加,图像聚类最近引起了极大的关注。传统聚类算法的效率在很大程度上取决于所使用的距离函数和功能的维度。因此,在处理未加工的图像或从加工图像中提取的高维特征时,通常会观察到性能降解。为了应对这些挑战,我们提出了一个深层聚类框架,该框架由修改的生成对抗网络(GAN)和辅助分类器组成。该修改在GAN的歧视器之前采用SOBEL操作,以增强学习特征的可分离性。然后,将鉴别器杠杆化以生成表示形式作为辅助分类器的输入。自适应目标函数用于训练辅助分类器来聚类表示,旨在通过最大程度地减少歧视者产生的多个表示的差异来提高鲁棒性。辅助分类器是用一组多个集群头实现的,在该组中,公差超参数用于处理不平衡的数据。我们的结果表明,所提出的方法在CIFAR-10和CIFAR-100上的最先进聚类方法显着优于最先进的聚类方法,并且在STL10和MNIST数据集上具有竞争力。

Image clustering has recently attracted significant attention due to the increased availability of unlabelled datasets. The efficiency of traditional clustering algorithms heavily depends on the distance functions used and the dimensionality of the features. Therefore, performance degradation is often observed when tackling either unprocessed images or high-dimensional features extracted from processed images. To deal with these challenges, we propose a deep clustering framework consisting of a modified generative adversarial network (GAN) and an auxiliary classifier. The modification employs Sobel operations prior to the discriminator of the GAN to enhance the separability of the learned features. The discriminator is then leveraged to generate representations as the input to an auxiliary classifier. An adaptive objective function is utilised to train the auxiliary classifier for clustering the representations, aiming to increase the robustness by minimizing the divergence of multiple representations generated by the discriminator. The auxiliary classifier is implemented with a group of multiple cluster-heads, where a tolerance hyper-parameter is used to tackle imbalanced data. Our results indicate that the proposed method significantly outperforms state-of-the-art clustering methods on CIFAR-10 and CIFAR-100, and is competitive on the STL10 and MNIST datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源