论文标题

Kimera-Multi:一种用于分布式多机器人标准的系统同时定位和映射系统

Kimera-Multi: a System for Distributed Multi-Robot Metric-Semantic Simultaneous Localization and Mapping

论文作者

Chang, Yun, Tian, Yulun, How, Jonathan P., Carlone, Luca

论文摘要

我们介绍了第一个用于密集的度量语义同时定位和映射(SLAM)的完全分布的多机器人系统。我们的系统被称为Kimera-Multi,由配备有视觉惯性传感器的机器人团队实施,并实时构建环境的3D网格模型,在该机器人中,网格的每个面都带有语义标签(例如,建筑物,建筑物,道路,公路,对象)。在Kimera-Multi中,每个机器人都使用Kimera构建了局部轨迹估计和局部网格。然后,当两个机器人在通信范围内时,它们会启动分布式位置识别和稳健的姿势图优化协议,并具有新颖的增量最大集合离群值排斥。该协议允许机器人通过利用机器人间循环封闭来改善其局部轨迹估计。最后,每个机器人都使用其改进的轨迹估计来使用网格变形技术来校正本地网格。我们在光真实的模拟和真实数据中演示了Kimera-Multi。 Kimera-Multi(i)能够构建准确的3D公式信息网格,(ii)对于不正确的循环封闭功能强大,同时需要少于最先进的分布式SLAM后端的计算,并且(III)在每个机器人的计算以及通信带方面均高效。

We present the first fully distributed multi-robot system for dense metric-semantic Simultaneous Localization and Mapping (SLAM). Our system, dubbed Kimera-Multi, is implemented by a team of robots equipped with visual-inertial sensors, and builds a 3D mesh model of the environment in real-time, where each face of the mesh is annotated with a semantic label (e.g., building, road, objects). In Kimera-Multi, each robot builds a local trajectory estimate and a local mesh using Kimera. Then, when two robots are within communication range, they initiate a distributed place recognition and robust pose graph optimization protocol with a novel incremental maximum clique outlier rejection; the protocol allows the robots to improve their local trajectory estimates by leveraging inter-robot loop closures. Finally, each robot uses its improved trajectory estimate to correct the local mesh using mesh deformation techniques. We demonstrate Kimera-Multi in photo-realistic simulations and real data. Kimera-Multi (i) is able to build accurate 3D metric-semantic meshes, (ii) is robust to incorrect loop closures while requiring less computation than state-of-the-art distributed SLAM back-ends, and (iii) is efficient, both in terms of computation at each robot as well as communication bandwidth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源