论文标题

沼泽上的AI:监视和评估蔓越莓作物风险

AI on the Bog: Monitoring and Evaluating Cranberry Crop Risk

论文作者

Akiva, Peri, Planche, Benjamin, Roy, Aditi, Dana, Kristin, Oudemans, Peter, Mars, Michael

论文摘要

近年来,精确农业的机器视野引起了相当大的研究兴趣。本文的目的是开发端到端的蔓越莓健康监测系统,以实现和支持实时蔓越莓过热评估,以促进可能维持农场经济可行性的明智决定。为了实现这一目标,我们提出了两个主要的基于深度学习的模块:1)蔓越莓水果分割,以描绘出暴露于阳光的蔓越莓场图像中的确切水果区域,2)预测云覆盖条件和太阳辐照度以估计暴露的蔓越莓的内部温度。我们开发基于无人机的现场数据和基于地面的天空数据收集系统,以在多个时间点收集视频图像,以用于作物健康分析。对数据集的广泛评估表明,有可能以高精度预测暴露的水果的内部温度(MAPE 0.02%)。在5-20分钟的时间范围内,发现太阳辐照度预测误差为8.41-20.36%。该系统具有62.54%MIOU的分割和13.46 MAE,用于计算裸露的水果识别的准确性,该系统能够向种植者提供明智的反馈,以在不久的将来采取较高晒伤风险的确定的作物领域的预防措施(例如灌溉)。尽管这种新型系统适用于蔓越莓健康监测,但它代表了有效耕作的开创性一步,并且在精确农业中有用,超出了蔓越莓过热问题。

Machine vision for precision agriculture has attracted considerable research interest in recent years. The goal of this paper is to develop an end-to-end cranberry health monitoring system to enable and support real time cranberry over-heating assessment to facilitate informed decisions that may sustain the economic viability of the farm. Toward this goal, we propose two main deep learning-based modules for: 1) cranberry fruit segmentation to delineate the exact fruit regions in the cranberry field image that are exposed to sun, 2) prediction of cloud coverage conditions and sun irradiance to estimate the inner temperature of exposed cranberries. We develop drone-based field data and ground-based sky data collection systems to collect video imagery at multiple time points for use in crop health analysis. Extensive evaluation on the data set shows that it is possible to predict exposed fruit's inner temperature with high accuracy (0.02% MAPE). The sun irradiance prediction error was found to be 8.41-20.36% MAPE in the 5-20 minutes time horizon. With 62.54% mIoU for segmentation and 13.46 MAE for counting accuracies in exposed fruit identification, this system is capable of giving informed feedback to growers to take precautionary action (e.g. irrigation) in identified crop field regions with higher risk of sunburn in the near future. Though this novel system is applied for cranberry health monitoring, it represents a pioneering step forward for efficient farming and is useful in precision agriculture beyond the problem of cranberry overheating.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源