论文标题

拆开深度Relu网络的黑匣子:可解释性,诊断和简化

Unwrapping The Black Box of Deep ReLU Networks: Interpretability, Diagnostics, and Simplification

论文作者

Sudjianto, Agus, Knauth, William, Singh, Rahul, Yang, Zebin, Zhang, Aijun

论文摘要

深度神经网络(DNNS)在学习具有强大预测能力的复杂模式方面取得了巨大的成功,但它们通常被认为是没有足够水平的透明度和解释性的“黑匣子”模型。重要的是要用严格的数学和实用工具来揭开DNN的神秘面纱,尤其是在将其用于关键任务应用时。本文旨在通过局部线性表示将黑匣子包装成黑匣子,该线性表示,它利用激活模式并将复杂网络分解为等效的本地线性模型(LLMS)。我们开发了一种基于LLM的便捷工具包,以解释性,诊断和简化预训练的深层RELU网络。我们提出了用于解释和诊断的局部线性概况图和其他可视化方法,并提出了一种有效的网络简化合并策略。所提出的方法通过仿真示例,基准数据集和家庭贷款信用风险评估中的真实案例研究来证明。

The deep neural networks (DNNs) have achieved great success in learning complex patterns with strong predictive power, but they are often thought of as "black box" models without a sufficient level of transparency and interpretability. It is important to demystify the DNNs with rigorous mathematics and practical tools, especially when they are used for mission-critical applications. This paper aims to unwrap the black box of deep ReLU networks through local linear representation, which utilizes the activation pattern and disentangles the complex network into an equivalent set of local linear models (LLMs). We develop a convenient LLM-based toolkit for interpretability, diagnostics, and simplification of a pre-trained deep ReLU network. We propose the local linear profile plot and other visualization methods for interpretation and diagnostics, and an effective merging strategy for network simplification. The proposed methods are demonstrated by simulation examples, benchmark datasets, and a real case study in home lending credit risk assessment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源