论文标题

Dyernie:Riemannian歧管嵌入的动态演变,用于时间知识图完成

DyERNIE: Dynamic Evolution of Riemannian Manifold Embeddings for Temporal Knowledge Graph Completion

论文作者

Han, Zhen, Ma, Yunpu, Chen, Peng, Tresp, Volker

论文摘要

最近,人们对时间知识图(KGS)的学习表示形式有越来越多的兴趣,这些图表记录了随着时间的推移实体之间的动态关系。颞kg通常表现出多个同时的非欧几里得结构,例如层次结构和循环结构。但是,时间kg的现有嵌入方法通常会学习实体表示及其在欧几里得空间中的动态演变,这可能无法很好地捕获这种内在结构。为此,我们提出了Dyernie,这是一种非欧国人嵌入方法,它在Riemannian歧管的产物中学习了不断发展的实体表示,其中组成的空间是从基础数据的截面曲率中估算出来的。产品歧管使我们的方法能够更好地反映颞kg上各种几何结构。此外,为了捕获时间kg的进化动力学,我们让实体表示根据每个时间戳的切线空间中定义的速度向量演变。我们详细分析了几何空间对时间kg的表示的贡献,并在时间知识图完成任务上评估了我们的模型。在三个现实世界数据集上进行的广泛实验表明性能显着提高,表明可以通过嵌入在riemannian歧管上的嵌入性演变来更正确地模拟多关系图数据的动力学。

There has recently been increasing interest in learning representations of temporal knowledge graphs (KGs), which record the dynamic relationships between entities over time. Temporal KGs often exhibit multiple simultaneous non-Euclidean structures, such as hierarchical and cyclic structures. However, existing embedding approaches for temporal KGs typically learn entity representations and their dynamic evolution in the Euclidean space, which might not capture such intrinsic structures very well. To this end, we propose Dy- ERNIE, a non-Euclidean embedding approach that learns evolving entity representations in a product of Riemannian manifolds, where the composed spaces are estimated from the sectional curvatures of underlying data. Product manifolds enable our approach to better reflect a wide variety of geometric structures on temporal KGs. Besides, to capture the evolutionary dynamics of temporal KGs, we let the entity representations evolve according to a velocity vector defined in the tangent space at each timestamp. We analyze in detail the contribution of geometric spaces to representation learning of temporal KGs and evaluate our model on temporal knowledge graph completion tasks. Extensive experiments on three real-world datasets demonstrate significantly improved performance, indicating that the dynamics of multi-relational graph data can be more properly modeled by the evolution of embeddings on Riemannian manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源