论文标题
一阶对称算子在5维迈尔斯 - 佩里时空中具有相同的角动量的重力扰动
The First Order Symmetry Operator on Gravitational Perturbations in the 5-dimensional Myers-Perry Spacetime with Equal Angular Momenta
论文作者
论文摘要
据透露,可以通过杀伤yano 3形式构建真空时期的线性化爱因斯坦方程的第一阶对称算子。这可能用于构建全部或部分解决方案方程的解决方案。在本文中,我们对施瓦茨柴尔兹时空的度量扰动进行模式分解,在5个维度上具有相等的角动量,并研究对称算子在特定模式中的作用。我们表明,在这种空间时,通过对称算子的作用,度量扰动的模式之间没有过渡,最终是等轴测值的无限转换的线性组合。
It has been revealed that the first order symmetry operator for the linearized Einstein equation on a vacuum spacetime can be constructed from a Killing-Yano 3-form. This might be used to construct all or part of solutions to the field equation. In this paper, we perform a mode decomposition of a metric perturbation on the Schwarzschild spacetime and the Myers-Perry spacetime with equal angular momenta in 5 dimensions, and investigate the action of the symmetry operator on specific modes concretely. We show that on such spacetimes, there is no transition between the modes of a metric perturbation by the action of the symmetry operator, and it ends up being the linear combination of the infinitesimal transformations of isometry.