论文标题

重新审视傅里叶代数的完全有限的同构

Completely bounded homomorphisms of the Fourier algebra revisited

论文作者

Daws, Matthew

论文摘要

令$ a(g)$和$ b(h)$是本地紧凑型组$ g $和$ h $的傅立叶和傅立叶代数。 Ilie和Spronk表明,连续的分段仿射地图$α:y \ subseteq h \ rightarrow g $诱导完全有限的同构$φ$φ:a(g)\ rightarrow b(h)$,当$ g $是$ g $时,每种完全有限的同源性都会以这种方式出现。科恩(Cohen)在阿贝里安(Abelian)环境中的这项广义工作。我们认为,现有论点的关键引理存在差距,我们看不到如何修复。我们在这里提出了一种不同的策略来展示结果,而不是使用拓扑论点,而是更加合并,并利用衡量理论思想,更紧密地遵循了科恩的原始思想。

Let $A(G)$ and $B(H)$ be the Fourier and Fourier-Stieltjes algebras of locally compact groups $G$ and $H$, respectively. Ilie and Spronk have shown that continuous piecewise affine maps $α: Y \subseteq H\rightarrow G$ induce completely bounded homomorphisms $Φ:A(G)\rightarrow B(H)$, and that when $G$ is amenable, every completely bounded homomorphism arises in this way. This generalised work of Cohen in the abelian setting. We believe that there is a gap in a key lemma of the existing argument, which we do not see how to repair. We present here a different strategy to show the result, which instead of using topological arguments, is more combinatorial and makes use of measure theoretic ideas, following more closely the original ideas of Cohen.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源