论文标题

连接性保持路径在$ k $连接的两部分图中

Connectivity keeping paths in $k$-connected bipartite graphs

论文作者

Luo, Lian, Tian, Yingzhi, Wu, Liyun

论文摘要

在2010年,Mader [W. Mader,连接性保持路径在$ k $连接的图中,J。Graph Doephy 65(2010)61-69。 $ k $ - 连接。在本文中,我们考虑了两部分图的类似问题,并证明每个$ k $连接的两分图$ g $具有最低度至少$ k+m $包含$ g-v(p)$的路径$ p $ a $ k $ k $ connected。

In 2010, Mader [W. Mader, Connectivity keeping paths in $k$-connected graphs, J. Graph Theory 65 (2010) 61-69.] proved that every $k$-connected graph $G$ with minimum degree at least $\lfloor\frac{3k}{2}\rfloor+m-1$ contains a path $P$ of order $m$ such that $G-V(P)$ is still $k$-connected. In this paper, we consider similar problem for bipartite graphs, and prove that every $k$-connected bipartite graph $G$ with minimum degree at least $k+m$ contains a path $P$ of order $m$ such that $G-V(P)$ is still $k$-connected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源