论文标题
连接性保持路径在$ k $连接的两部分图中
Connectivity keeping paths in $k$-connected bipartite graphs
论文作者
论文摘要
在2010年,Mader [W. Mader,连接性保持路径在$ k $连接的图中,J。Graph Doephy 65(2010)61-69。 $ k $ - 连接。在本文中,我们考虑了两部分图的类似问题,并证明每个$ k $连接的两分图$ g $具有最低度至少$ k+m $包含$ g-v(p)$的路径$ p $ a $ k $ k $ connected。
In 2010, Mader [W. Mader, Connectivity keeping paths in $k$-connected graphs, J. Graph Theory 65 (2010) 61-69.] proved that every $k$-connected graph $G$ with minimum degree at least $\lfloor\frac{3k}{2}\rfloor+m-1$ contains a path $P$ of order $m$ such that $G-V(P)$ is still $k$-connected. In this paper, we consider similar problem for bipartite graphs, and prove that every $k$-connected bipartite graph $G$ with minimum degree at least $k+m$ contains a path $P$ of order $m$ such that $G-V(P)$ is still $k$-connected.