论文标题
在有限温度下捕获的玻色果混合物:量子蒙特卡洛方法
Trapped Bose-Bose mixtures at finite temperature: a quantum Monte Carlo approach
论文作者
论文摘要
我们使用量子蒙特卡洛方法研究了稀释状态中被困的玻色 - 果混合物的热性能。我们的主要目的是研究混合相和分离的相对于温度的超流体密度和冷凝水部分对温度的依赖性。为此,我们将扩散的蒙特卡洛法(在零温度极限)和路径综合蒙特卡洛方法中用于有限温度。将获得的结果与在零温度下混合物的耦合总壁杆菌方程的溶液进行了比较。我们注意到在某些相分离的混合物中存在各向异性超流体密度。我们的结果还表明,超流体密度和冷凝水部分的温度演变略有不同,表明超流体分数小于冷凝水分的情况值得注意的情况。
We study thermal properties of a trapped Bose-Bose mixture in a dilute regime using quantum Monte Carlo methods. Our main aim is to investigate the dependence of the superfluid density and the condensate fraction on temperature, for the mixed and separated phases. To this end, we use the diffusion Monte Carlo method, in the zero-temperature limit, and the path-integral Monte Carlo method for finite temperatures. The results obtained are compared with solutions of the coupled Gross-Pitaevskii equations for the mixture at zero temperature. We notice the existence of an anisotropic superfluid density in some phase-separated mixtures. Our results also show that the temperature evolution of the superfluid density and condensate fraction is slightly different, showing noteworthy situations where the superfluid fraction is smaller than the condensate fraction.