论文标题
seqgensql-结构化查询语言的强大序列生成模型
SeqGenSQL -- A Robust Sequence Generation Model for Structured Query Language
论文作者
论文摘要
我们使用T5(Raffel等人(2019))探索直接将自然语言问题转化为SQL语句。通用自然语言与数据库中存储的信息接口需要灵活地将自然语言问题转化为数据库查询。最佳性能的文本到SQL系统通过首先将问题转换为中间逻辑形式(LF)来处理此任务(Lyu等人(2020))。尽管LFS提供了方便的中间表示并简化了查询生成,但它们引入了额外的复杂性和注释要求。但是,在没有LFS提供的脚手架的情况下,直接将问题转换为SQL语句的弱监督模型已被证明更加困难(Min等人(2019))。我们使用T5(Raffel等人(2019))将问题直接转换为SQL语句,这是一种预先训练的文本TOXT生成模型,被修改以支持Pointer-Inerer-Generator样式解码(请参阅等(参见2017年))。我们使用问题架构信息以及使用自动生成的银训练数据的问题进行探索。最终的模型在WikisQL(Zhong等人(2017))测试数据集上实现了90.5%的执行精度,这是一种针对弱监督SQL生成的新最新的。在先前的最新面前,性能提高为6.6%(Min等人(2019年)),并接近使用LFS的最先进系统的性能。
We explore using T5 (Raffel et al. (2019)) to directly translate natural language questions into SQL statements. General purpose natural language that interfaces to information stored within databases requires flexibly translating natural language questions into database queries. The best performing text-to-SQL systems approach this task by first converting questions into an intermediate logical form (LF) (Lyu et al. (2020)). While LFs provide a convenient intermediate representation and simplify query generation, they introduce an additional layer of complexity and annotation requirements. However, weakly supervised modeling that directly converts questions to SQL statements has proven more difficult without the scaffolding provided by LFs (Min et al. (2019)). We approach direct conversion of questions to SQL statements using T5 (Raffel et al. (2019)), a pre-trained textto-text generation model, modified to support pointer-generator style decoding (See et al. (2017)). We explore using question augmentation with table schema information and the use of automatically generated silver training data. The resulting model achieves 90.5% execution accuracy on the WikiSQL (Zhong et al. (2017)) test data set, a new state-of-the-art on weakly supervised SQL generation. The performance improvement is 6.6% absolute over the prior state-of-the-art (Min et al. (2019)) and approaches the performance of state-ofthe-art systems making use of LFs.