论文标题
使用深度学习的AMI网络的隐私保护和有效的数据收集方案
Privacy-Preserving and Efficient Data Collection Scheme for AMI Networks Using Deep Learning
论文作者
论文摘要
在安装在消费者方面的高级计量基础设施(AMI)中,智能电表(SMS)定期将细粒度消耗读数发送给电力实用程序,以进行负载监控和能源管理。变更和传输(CAT)是一种收集这些读数的有效方法,在消费没有足够的变化时,读数不会传输。但是,这种方法会导致隐私问题,即通过分析SM的传输模式,可以推断出有关房屋居民的敏感信息。例如,由于当居民正在旅行时可以区分传输模式,因此攻击者可以分析该模式以发射存在私人攻击(PPA)来推断居民是否不在家里。在本文中,我们提出了一种名为“ STDL”的方案,用于有效地收集AMI网络中的功耗读数,同时通过使用深入的方法来发送欺骗传输(冗余的真实读数)来保留消费者的隐私。我们首先使用聚类技术和实际功耗读数来创建使用CAT方法传输模式的数据集。然后,我们使用深入学习训练攻击者模型,我们的评估表明攻击者的成功率约为91%。最后,我们训练一个基于学习的防御模型,以有效地发送欺骗传输以阻止PPA。进行了广泛的评估,结果表明我们的计划可以将攻击者的成功率降低到13.52%的情况下,以防他知道防御模型,如果他不知道该模型,同时仍然可以在应传输的读数数量方面达到高效率。我们的测量结果表明,与不断传输读数相比,所提出的方案可以减少应减少41%传输的读数数量。
In advanced metering infrastructure (AMI), smart meters (SMs), which are installed at the consumer side, send fine-grained power consumption readings periodically to the electricity utility for load monitoring and energy management. Change and transmit (CAT) is an efficient approach to collect these readings, where the readings are not transmitted when there is no enough change in consumption. However, this approach causes a privacy problem that is by analyzing the transmission pattern of an SM, sensitive information on the house dwellers can be inferred. For instance, since the transmission pattern is distinguishable when dwellers are on travel, attackers may analyze the pattern to launch a presence-privacy attack (PPA) to infer whether the dwellers are absent from home. In this paper, we propose a scheme, called "STDL", for efficient collection of power consumption readings in AMI networks while preserving the consumers' privacy by sending spoofing transmissions (redundant real readings) using a deep-learning approach. We first use a clustering technique and real power consumption readings to create a dataset for transmission patterns using the CAT approach. Then, we train an attacker model using deep-learning, and our evaluations indicate that the success rate of the attacker is about 91%. Finally, we train a deep-learning-based defense model to send spoofing transmissions efficiently to thwart the PPA. Extensive evaluations are conducted, and the results indicate that our scheme can reduce the attacker's success rate, to 13.52% in case he knows the defense model and to 3.15% in case he does not know the model, while still achieving high efficiency in terms of the number of readings that should be transmitted. Our measurements indicate that the proposed scheme can reduce the number of readings that should be transmitted by about 41% compared to continuously transmitting readings.