论文标题

ppt $^2 $猜想均适用于所有choi型地图

The PPT$^2$ conjecture holds for all Choi-type maps

论文作者

Singh, Satvik, Nechita, Ion

论文摘要

我们证明,ppt $^2 $猜想适用于矩阵代数之间的线性图,这些矩阵代数是在对角线统一组的行动下是协变量的。许多显着示例,例如Choi-Type地图,去极化图,绘制地图,振幅阻尼图和其混合物,都位于此类中。我们的证明依赖于对成对的矩阵宽度的基质理论概念的概括,而对因子宽度二的情况下,完全表征了。

We prove that the PPT$^2$ conjecture holds for linear maps between matrix algebras which are covariant under the action of the diagonal unitary group. Many salient examples, like the Choi-type maps, depolarizing maps, dephasing maps, amplitude damping maps, and mixtures thereof, lie in this class. Our proof relies on a generalization of the matrix-theoretic notion of factor width for pairwise completely positive matrices, and a complete characterization in the case of factor width two.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源