论文标题
在流形上滑动:几何态度控制与四元素
Sliding on Manifolds: Geometric Attitude Control with Quaternions
论文作者
论文摘要
这项工作提出了一个基于Quaternion的滑动变量,该变量描述了任何正向完成所需的态度轨迹的指数收敛误差动态。所提出的滑动变量直接在四季度形成的非欧几里得空间上运行,并明确处理双重覆盖属性,以在反馈中使用时启用全局态度跟踪。提供了对滑动变量的深入分析,并与文献中的其他变量进行了比较。然后得出了几个反馈控制器,包括非线性PD,鲁棒和自适应滑动控制器。具有不确定动力学的刚体的仿真结果证明了该方法的有效性和优越性。
This work proposes a quaternion-based sliding variable that describes exponentially convergent error dynamics for any forward complete desired attitude trajectory. The proposed sliding variable directly operates on the non-Euclidean space formed by quaternions and explicitly handles the double covering property to enable global attitude tracking when used in feedback. In-depth analysis of the sliding variable is provided and compared to others in the literature. Several feedback controllers including nonlinear PD, robust, and adaptive sliding control are then derived. Simulation results of a rigid body with uncertain dynamics demonstrate the effectiveness and superiority of the approach.