论文标题

胸部X射线图像阶段特征,用于改善使用卷积神经网络对COVID-19的诊断

Chest X-ray Image Phase Features for Improved Diagnosis of COVID-19 Using Convolutional Neural Network

论文作者

Qi, Xiao, Brown, Lloyd, Foran, David J., Hacihaliloglu, Ilker

论文摘要

最近,2019年新型冠状病毒病(Covid-19)大流行的爆发严重危害了人类健康和生命。由于测试套件的可用性有限,因此需要辅助诊断方法的需求增加了。最近的研究表明,COVID-19患者(例如CT和X射线)的射线照相包含有关Covid-19病毒的显着信息,可以用作另一种诊断方法。胸部X射线(CXR)由于其更快的成像时间,广泛的可用性,低成本和可移植性而引起了很多关注,并且变得非常有前途。在解释收集的数据时,需要具有高精度和鲁棒性的计算方法,并有助于放射科医生进行帮助。在这项研究中,我们设计了一种新型的多功能卷积神经网络(CNN)结构,用于从CXR图像中对COVID-19的多类改进分类。使用基于局部阶段的图像增强方法增强了CXR图像。增强的图像以及原始CXR数据被用作我们提出的CNN体​​系结构的输入。使用消融研究,我们显示了增强图像在提高诊断准确性方面的有效性。我们在两个数据集上提供定量评估,并进行定性结果以进行视觉检查。定量评估是对由8,851个正常(健康),6,045次肺炎和3,323 Covid-19 Covid-19 CXR扫描组成的数据进行的。在DataSet-1中,我们的模型达到了三类分类的95.57 \%的平均准确性,99 \%的精度,召回和F1分数对于COVID-19案例。对于DataSet-2,我们获得了94.44 \%的平均精度,以及95 \%的精度,召回和F1分数用于检测COVID-19。与单功能CNN相比,我们提出的多功能指导的CNN取得了改善的结果,证明了基于局部阶段的CXR图像增强的重要性(https://github.com/endiqq/fus-cnns_covid-19)。

Recently, the outbreak of the novel Coronavirus disease 2019 (COVID-19) pandemic has seriously endangered human health and life. Due to limited availability of test kits, the need for auxiliary diagnostic approach has increased. Recent research has shown radiography of COVID-19 patient, such as CT and X-ray, contains salient information about the COVID-19 virus and could be used as an alternative diagnosis method. Chest X-ray (CXR) due to its faster imaging time, wide availability, low cost and portability gains much attention and becomes very promising. Computational methods with high accuracy and robustness are required for rapid triaging of patients and aiding radiologist in the interpretation of the collected data. In this study, we design a novel multi-feature convolutional neural network (CNN) architecture for multi-class improved classification of COVID-19 from CXR images. CXR images are enhanced using a local phase-based image enhancement method. The enhanced images, together with the original CXR data, are used as an input to our proposed CNN architecture. Using ablation studies, we show the effectiveness of the enhanced images in improving the diagnostic accuracy. We provide quantitative evaluation on two datasets and qualitative results for visual inspection. Quantitative evaluation is performed on data consisting of 8,851 normal (healthy), 6,045 pneumonia, and 3,323 Covid-19 CXR scans. In Dataset-1, our model achieves 95.57\% average accuracy for a three classes classification, 99\% precision, recall, and F1-scores for COVID-19 cases. For Dataset-2, we have obtained 94.44\% average accuracy, and 95\% precision, recall, and F1-scores for detection of COVID-19. Our proposed multi-feature guided CNN achieves improved results compared to single-feature CNN proving the importance of the local phase-based CXR image enhancement (https://github.com/endiqq/Fus-CNNs_COVID-19).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源